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ABSTRACT
In few-shot relational triple extraction (FS-RTE), one seeks to ex-
tract relational triples from plain texts by utilizing only few an-
notated samples. Recent work first extracts all entities and then
classifies their relations. Such an entity-then-relation paradigm
ignores the entity discrepancy between relations. To address it, we
propose a novel task decomposition strategy, Relation-then-Entity,
for FS-RTE. It first detects relations occurred in a sentence and
then extracts the corresponding head/tail entities of the detected
relations. To instantiate this strategy, we further propose a model,
RelATE, which builds a dual-level attention to aggregate relation-
relevant information to detect the relation occurrence and utilizes
the annotated samples of the detected relations to extract the cor-
responding head/tail entities. Experimental results show that our
model outperforms previous work by an absolute gain (18.98%,
28.85% in F1 in two few-shot settings).
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1 INTRODUCTION
Relational Triple Extraction (RTE), as an essential task in Informa-
tion Extraction, aims to extract entities and classify relations of
entity pairs from the unstructured texts. For example, Hidden Dam
is the only storage dam on the Fresno River, a relational
triple (Hidden Dam, Located_in, Fresno River) is extracted from
the given text which involves a Located_in relation between the
head entity, Hidden Dam, and the tail entity, Fresno River.

Existing methods [6, 8, 14, 22, 24, 26, 32] have achieved great
successes by employing the standard fully supervised learning but
such a fully supervised paradigm heavily depends on the large-scale
human-annotated dataset. As the emerging of knowledge from var-
ious domains, new relations, especially those that need professional
knowledge to understand, are difficult to be manually annotated on
a large scale. Under the circumstance with insufficient annotation
resources, existing methods tend to struggle when extracting rela-
tional triples of new emerged relations with few annotated samples.
Thus, it is critical to study RTE when only few annotated triples
are available, a.k.a. few-shot relational triple extraction (FS-RTE).

To solve FS-RTE, previous work [25] follows the conventional
entity-then-relation paradigm [13, 27]. It first uses a fully supervised
entity extractor trained on large-scale data of known relations to
extract all entities and then builds a few-shot relation classifier to
classify novel relations of all extracted entity pairs in the few-shot
manner [4, 7, 18–21]. However, the entity discrepancy problem
exists in FS-RTE, which means that entities of the new emerged
relations may contain entity types completely different from the
known ones since every relation puts some constraints on the type of
head and tail entities [31]. Hence, the entity extractor, trained on
entities of known relations, fails to identify those entities of novel
relations. One intuitive way to overcome this problem is to adapt
the entity extractor in the few-shot manner by harnessing the few
annotated samples. However, it would introduce the redundant
entity pair problem which means that unrelated entity pairs
with non-relation would be extracted unavoidably, misleading the
relation classifier.
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To solve two shortcomings of the entity-then-relation paradigm,
an alternative paradigm is to solve FS-RTE in a unified manner,
inspired by Zheng et al. [32]. We could design a unified tagging
schema by combining the tags of relation and entity (e.g., B-Founder-
Head) and then converts FS-RTE into the sequence labeling form.
Then, existing few-shot sequence labeling methods [1, 5, 10, 23] can
be utilized to solve it. Such a solution seems to be convincing since
it models the constraints and dependency between relation and en-
tity based on the tag compositional structures. Unfortunately, this
unified paradigm arises the tag exploding problem, i.e., combin-
ing the tag of relation and entity will introduce too many tags. For
example, if using the BIO tagging schema, it will introduce 𝑁 ×4+1
tags for 𝑁 relations in total (4 for B/I tags of head/tail entity, 1 for
O tag). Existing work [19] has indicated that the performance of
few-shot models drops significantly when the tag number increases.
Hence, the unified paradigm still struggles in FS-RTE.

All aforementioned problems result from the improper task de-
composition for FS-RTE. Specifically, FS-RTE can be understood
as the joint probability of relational triple extraction 𝑃 (ℎ, 𝑟, 𝑡 |𝑥,S)
where (ℎ, 𝑟, 𝑡) refers to the relational triple with a head entity ℎ and
a tail entity 𝑡 with their relation 𝑟 involved in sentence 𝑥 and S is
the few annotated samples. (1) For the entity-then-relation para-
digm, the first solution decomposes the joint probability into con-
ditional probability 𝑃 (ℎ, 𝑟, 𝑡 |𝑥,S) = 𝑃 (ℎ, 𝑡 |𝑥)𝑃 (𝑟 |ℎ, 𝑡, 𝑥,S). Since
the entity extraction phase 𝑃 (ℎ, 𝑡 |𝑥) does not utilize the samples
of novel relations, the entity extractor fails to identify those enti-
ties, suffering from the entity discrepancy problem. (2) Introducing
the few annotated samples to extract entities 𝑃 (ℎ, 𝑡 |𝑥,S) can be
viewed as decomposing the joint probability as 𝑃 (ℎ, 𝑟, 𝑡 |𝑥,S) =

𝑃 (ℎ, 𝑡 |𝑥,S)𝑃 (𝑟 |ℎ, 𝑡, 𝑥,S). But it does not consider the relation se-
mantics, resulting in redundant entity pairs. (3) The unified par-
adigm does not decompose the joint probability 𝑃 (ℎ, 𝑟, 𝑡 |𝑥,S) so
it needs the unified tagging schema to annotate the relation and
entity simultaneously, causing the tag exploding problem.

In this paper, we propose a novel task decomposition strategy,
Relation-then-Entity, for FS-RTE, free from all three problems.
As is well known, the head entity and tail entity should be de-
pendent on a specific relation and relations are usually implied by
the context of sentences [26]. In other words, if one model can-
not fully perceive the semantics of relation from sentences, it
is unreliable to extract the corresponding head entities and tail
entities. Based on this, we decompose the joint probability into
𝑃 (ℎ, 𝑟, 𝑡 |𝑥,S) = 𝑃 (𝑟 |𝑥,S)𝑃 (ℎ, 𝑡 |𝑟, 𝑥,S): (1) We first judiciously de-
tect the novel relation which a sentence may involve by compar-
ing the sentence semantics with the few annotated samples. (2)
Then we extract relation-corresponding head entity and tail entity
based on the few annotated triples of the detected relations. We
call the former subtask as Relation Detection (RD) and the latter
as Relation-specific Entity Extraction (REE). In this manner, only
relation-specific entities are extracted avoiding the entity discrep-
ancy and redundant entity pair problem. And through the task
decomposition, this paradigm would not use unified tags, which
avoids the tag exploding problem.

To instantiate the above paradigm, we propose a model named
RelATE (Relation-guided Attentive Triple Extractor). It consists of
an attentive relation detector for RD, and a relation-guided entity
extractor for REE. We further devise a relation-entity hint loss

to model the dependency between relation and entity explicitly.
We evaluate our method on the public benchmark dataset, FewRel.
Experimental results show that our proposed method significantly
outperforms previous works by a large margin.

2 PROBLEM FORMULATION
We formulate the few-shot relational triple extraction in the typical
𝑁 -way-𝐾-shot form. For 𝑁 relations, an small annotated support
set S = {(𝑟 (𝑖) , ℎ (𝑖) , 𝑡 (𝑖) , 𝑥 (𝑖) )}𝑁×𝐾

𝑖=1 is provided with only 𝐾 triple
instances for each relation 𝑟 (𝑖) . Each triple instance is annotated
the head entity ℎ (𝑖) and tail entity 𝑡 (𝑖) in a 𝑛-word sentence 𝑥 (𝑖) =
{𝑤 (𝑖)

1 ,𝑤
(𝑖)
2 , . . . ,𝑤

(𝑖)
𝑛 }. FS-RTE aims to extract relational triples from

a unlabeled query set Q based on the support set S. Formally, a
{S,Q} pair is called a 𝑁 -way-𝐾-shot task T .

3 METHODOLOGY
We decompose FS-RTE into two subtasks: 1) Relation Detection
which detects the occurred relation in a sentence, then 2) Relation-
specific Entity Extractionwhich extracts the corresponding head/tail
entities of the detected relations. Formally, given the training set
D𝑡𝑟𝑎𝑖𝑛 , the overall goal is to predict all triples, i.e., maximizing the
joint likelihood of annotated relational triples:∏

{S,Q}∈D𝑡𝑟𝑎𝑖𝑛

[∏
𝑥∈Q

𝑃 (ℎ, 𝑟, 𝑡 |𝑥, S)
]

=
∏

{S,Q}∈D𝑡𝑟𝑎𝑖𝑛

[∏
𝑥∈Q

𝑃 (𝑟 |𝑥, S)𝑃 (ℎ, 𝑡 |𝑟, 𝑥, S)
] (1)

Equation 1 applies the chain rule of probability by exploiting the
crucial fact that for a given sentence 𝑥 , a relation 𝑟 is implied
in the context semantics and any relation 𝑟 would lead to corre-
sponding head entities ℎ and tail entities 𝑡 in the sentence. Such a
relation-then-entity decomposition strategy are free from all prob-
lems claimed in Introduction. The relation-then-entity paradigm
can be instantiated in many ways. In this paper, we instantiate it
by proposing a novel model, RelATE. Figure 1 illustrates our model
and we describe the details of its components below.

3.1 Base Encoder
We first adopt the widely-used BERT [3] to encode the context into
real-valued embedding vectors. Given a sentence𝑥 = {𝑤1,𝑤2, . . . ,𝑤𝑛}
from the support set S or the query set Q, BERT will map all tokens
into hidden embedding representations 𝐻 ∈ R𝑛×𝑑ℎ :

𝐻 = {h1, h2, . . . , h𝑛 } = BERT(𝑥), (2)

where h𝑖 ∈ R𝑑ℎ is the representation of𝑤𝑖 , 𝑑ℎ is its dimension.

3.2 Attentive Relation Detector
Since relations are implied in the context semantics, we propose
an Attentive Relation Detector to integrate the relation-relevant
semantic information to detect the relation occurrence. Without
knowing the target head/tail entity, we design a dual-level attention:
support-level attention and query-level attention to do so.

Support-level Attention is to aggregate the relation-relevant
information from the support set to derive the relation prototype.
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Figure 1: Architecture of our proposed RelATE.

Since the sentence embedding contains the context semantics
which may imply a relation and the head/tail entity embedding con-
tain the entity type constraints of a relation, we first gather these
three embeddings to derive the raw relation semantic representa-
tion. Given the 𝑘-th support instance 𝐻𝑘 ∈ R𝑛×𝑑ℎ in the support
set, we use the “[CLS]” embedding h𝑘

𝑐𝑙𝑠
, as the sentence embedding

and use the average of the embeddings of the entity span to get the
head embedding h𝑘

ℎ𝑒𝑎𝑑
and tail embedding h𝑘

𝑡𝑎𝑖𝑙
respectively. Then,

the raw relation representation h𝑘
𝑟𝑒𝑙

is calculated as follows:

h𝑘
𝑟𝑒𝑙

= h𝑘
𝑐𝑙𝑠

+ h𝑘
ℎ𝑒𝑎𝑑

+ h𝑘
𝑡𝑎𝑖𝑙

(3)

Next, since relation semantics usually scatter in the sentence
context, we use the raw relation representation h𝑘

𝑟𝑒𝑙
to sift out the

relation-specific information through the sentence attentively.

ĥ𝑘
𝑟𝑒𝑙

= softmax(h𝑘
𝑟𝑒𝑙

𝐻𝑘
T)𝐻𝑘 (4)

where ĥ𝑘
𝑟𝑒𝑙

is the refined relation representation.
Getting the refined relation representation for each support in-

stance, we calculate the prototype for each relation by averaging
all the refined representations of that relation in the support set S:

c𝑟𝑒𝑙𝑖 =
1
𝐾

𝐾∑︁
𝑘=1

ĥ𝑘
𝑟𝑒𝑙
, 𝑖 = 1, 2, · · · , 𝑁 (5)

where c𝑟𝑒𝑙
𝑖

denotes the relation prototype for relation 𝑖 .
Query-level Attention is to aggregate the relation-specific

information in the query set based on the relation prototypes.
Given a query instance 𝐻𝑞 ∈ R𝑛×𝑑ℎ in the query set, we use

each relation prototype c𝑟𝑒𝑙
𝑖

to gather relation-specific semantics
in the query instance attentively:

ĥ(𝑞,𝑖 ) = softmax(c𝑟𝑒𝑙𝑖 𝐻𝑞
T)𝐻𝑞, 𝑖 = 1, 2, · · · , 𝑁 (6)

Finally, getting the relation prototype c𝑟𝑒𝑙
𝑖

and the correspond-
ing relation-specific semantic representations ĥ(𝑞,𝑖) of the query
instance, a matcher is employed to calculate the probability 𝑝𝑟𝑒𝑙

𝑞,𝑖
to

detect whether the query instance involves the relation:

𝑝𝑟𝑒𝑙𝑞,𝑖 = Matcher(ĥ(𝑞,𝑖 ) , c𝑟𝑒𝑙𝑖 ), 𝑖 = 1, 2, · · · , 𝑁 (7)

The matcher is detailed in Section 3.4.

3.3 Relation-guided Entity Extractor
If a relation is detected, the relation-guided entity extractor is em-
ployed to extract the corresponding head/tail entities based on the
support instances of the detected relation.

We adopt the span tagging schema [22, 24] to annotate the
start/end position of the entity. Assume that relation 𝑟 is detected,
we first select the support instances of relation 𝑟 from the original
support set S to get relation-specific support set S𝑟 . Then we calcu-
late prototypes of the start/end tags of head/tail entity by averaging
all the token representations with that label in S𝑟 :

c𝑝𝑜𝑠
𝑖

=
1

|S𝑟 (𝑖) |
∑︁

𝑤∈S𝑟 (𝑖 )
h, 𝑖 ∈ {𝑠ℎ, 𝑒ℎ, 𝑠𝑡 , 𝑒𝑡 } (8)

where 𝑠ℎ, 𝑒ℎ, 𝑠𝑡 , 𝑒𝑡 refer to the start/end position of head and tail
entity respectively, c𝑖 denotes the prototype for each span tag,
S𝑟 (𝑖) refers to the token set containing all words in S𝑟 with tag 𝑖 ,
h represents the corresponding representation of token𝑤 in S𝑟 (𝑖),
and | · | is the number of set elements.

Getting the tag prototypes, we employ matcher again to get the
probability 𝑝𝑒𝑛𝑡

𝑞,𝑖, 𝑗
for each token of query to tag head/tail entities:

𝑝𝑒𝑛𝑡𝑞,𝑖,𝑗 = Matcher(h𝑞
𝑗
, c𝑝𝑜𝑠
𝑖

), 𝑖 ∈ {𝑠ℎ, 𝑒ℎ, 𝑠𝑡 , 𝑒𝑡 } (9)

where h𝑞
𝑗
∈ 𝐻𝑞 and 𝑗 = 1, · · · , 𝑛.

3.4 Matcher
Matcher, shared by two abovemodules, aims to match the prototype
and the query representation to derive the probability by measuring
their similarity. It can be implemented variously. In this paper, we
implement it as a three-layer neural network.

Given the prototype c (relation prototype or span tag prototype)
and the query representation h (relation-specific semantic represen-
tation or token representation of query instance), we first construct
the input I of the network as follows:

I = [h; c; h − c; h + c; h ⊗ c] (10)

where ⊗ means element-wise product, [· ; ·] refers to the concate-
nation operation. We use a two-layer CNN and a followed linear
layer to map input I into a single value to act as the similarity score
between the prototype and the query representation.
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3.5 Relation-Entity Hint Loss
As is well known, each relation usually puts some constraints on
the types of its head and tail entity while the specific types of head
entity and tail entity also imply their relation [12, 26, 31]. To model
this dependency explicitly to promote two subtasks, we further
introduce a relation-entity hint loss.

Getting the relation prototype c𝑟𝑒𝑙 and its corresponding entity
prototypes c𝑝𝑜𝑠𝑠ℎ

, c𝑝𝑜𝑠𝑒ℎ
, c𝑝𝑜𝑠𝑠𝑡 , c𝑝𝑜𝑠𝑒𝑡 , we first utilize the mean pooling

over the start/end tag prototype of the head/tail entity respectively
to get the entity prototypes which contains the information of the
entity types:

cℎ𝑒𝑎𝑑 = MeanPool( [c𝑝𝑜𝑠𝑠ℎ
; c𝑝𝑜𝑠𝑒ℎ

])

c𝑡𝑎𝑖𝑙 = MeanPool( [c𝑝𝑜𝑠𝑠𝑡 ; c𝑝𝑜𝑠𝑒𝑡 ])
(11)

Then, we minimize the mean square error loss to make the head/tail
entity prototypes and relation prototype closer:

Lℎ𝑖𝑛𝑡 = MSE(𝑊ℎ𝑖𝑛𝑡 [cℎ𝑒𝑎𝑑 ; c𝑡𝑎𝑖𝑙 ], c𝑟𝑒𝑙 ) (12)

where𝑊ℎ𝑖𝑛𝑡 ∈ R𝑑ℎ×2𝑑ℎ is a learnable parameter. In this way, the
relation prototype and the head/tail prototype can guide the learn-
ing process for each other mutually by modeling the dependency
of the relation and its head/tail entity types explicitly.

3.6 Objective Function
To train our model, we use the negative log-likelihood loss of two
subtasks. We denote them as L𝑟𝑒𝑙 and L𝑒𝑛𝑡𝑖𝑡𝑦 respectively. Adding
our relation-entity hint loss, the final objective function is:

L = L𝑟𝑒𝑙 + L𝑒𝑛𝑡𝑖𝑡𝑦 + 𝛼Lℎ𝑖𝑛𝑡 (13)

where 𝛼 is the hyperparameter weight.

4 EXPERIMENT
4.1 Experimental Setup
Dataset: Following previous work [25], we conduct experiments on
the public benchmark dataset FewRel [9], which releases 80 relations
and each relation owns 700 triple instances in total. Following Yu
et al. [25], we use 50 relations as the training set, 15 relations as
the development set and the rest 15 relations as the test set. Note
that the relations of the training/dev/test set are non-overlapping.
For the detailed statistics of FewRel, please refer to Appendix A.

Evaluation: We follow the metrics in previous work [25] to
evaluate the model performance in 5-way-5-shot and 10-way-10-
shot settings. Concretely, a relational triple is marked correct if and
only if the spans of the head and tail entity are correctly identified
and the associated relation is also predicted correctly. We adopt
the standard micro F1 score to evaluate the results and report the
averages and standard deviations over 5 randomly initialized runs.

Hyperparameter:We use AdamW optimizer to train our model
with the learning rate of 1 × 10−5 for BERT and 1 × 10−3 for others.
The maximum sentence length is set as 128. The coefficient of
the relation-entity hint loss is set as 0.2. The filter size of CNN is
set as [3, 3] and the channel number is set as [8, 4]. All the hyper-
parameters are tuned on the dev set by grid search. Due to the space
limitation, more implementation details are reported in Appendix
B including detailed hyperparameter settings, training strategy and
computation architecture.

Table 1: Main results: F1 scores (10−2) of different models on
the FewRel test set. Boldmarks the highest number among all
models. Underline marks the second-highest number, and ±
marks the standard deviation. *marks statistically significant
improvements over the best baseline with 𝑝 < 0.01 under a
bootstrap test.

Model 5-Way-5-Shot 10-Way-10-Shot

FT-BERT 4.71 ± 0.96 2.94 ± 0.77
CasRel 2.11 ± 1.03 2.04 ± 0.52

MatchNet 10.13 ± 0.43 4.40 ± 1.02
RelationNet 9.91 ± 0.28 6.65 ± 0.33
Proto 14.18 ± 0.25 6.53 ± 0.60
Proto+Att 18.20 ± 0.46 10.55 ± 0.31
MPE 23.34 ± 0.79 12.08 ± 0.83
FS-MPE 29.27 ± 0.89 20.72 ± 0.92

WPZ 23.61 ± 0.14 23.28 ± 0.33
L-TapNet+CDT 28.23 ± 0.76 26.40 ± 0.31
StructShot 25.94 ± 3.06 20.28 ± 2.43
PA-CRF 34.14 ± 0.30 30.44 ± 1.15

RelATE 42.32 ± 0.53 40.93 ± 0.35

Baseline:We choose several baselines which can be categorized
into three paradigms. (1) Standard Supervised Paradigm follows the
standard fully supervised learning, including FT-BERT [25], Cas-
Rel [22]. (2) Entity-then-Relation Paradigm first uses a conventional
fully-supervised entity extractor to identify all entities and then
uses few-shot classifier to classify their relation, including: Match-
Net [21, 25], Proto [19, 25], Proto+Att [7, 25], Relation [20, 25],
MPE [25]. In addition, FS-MPE is a variant of MPE, which replaces
the fully-supervised entity extractor with a few-shot entity extrac-
tor using the prototypical network [19]. (3) Unified Paradigm adapts
several few-shot sequence labeling methods into FS-RTE, including:
WPZ [5], L-TapNet+CDT [10], StructShot [23], PA-CRF [1].

4.2 Evaluation Results
Main Results. Table 1 reports the results of our model against
other baseline models on the FewRel test set. It can be seen that our
method, RelATE, significantly outperforms all competitive baseline
models and achieves the state-of-the-art in two few-shot settings.

Comparison with Standard Supervised model. Obviously, all few-
shot models exceed FT-BERT and CasRel, proving that the standard
fully supervised paradigm is incapable of solving FS-RTE.

Comparison with Entity-then-Relationmodels.Using conventional
entity extractor, the previous work MPE performs lower than our
RelATE with a significant gap (18.98% and 28.85% in two settings
respectively). Utilizing the support set to extract entities in the few-
shot manner, FS-MPE reaches higher performance compared to
MPE. But it still cannot catch up with our RelATE with a huge gap
(13.05% and 20.21% in two settings respectively). It shows that our
relation-then-entity paradigm is more capable of solving FS-RTE
than entity-then-relation paradigm.

Comparison with Unified models. Utilizing the few-shot sequence
labeling methods to solve FS-RTE, all unified models outperform
MPE, indicating that the few-shot sequence labeling methods can
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Table 2: Bottleneck analysis: Precision, Recall and F1 score
(10−2) are reported on the FewRel test set.

Model 5-Way-5-Shot 10-Way-10-Shot

P / R / F1 P / R / F1

MPE 21.33 / 35.40 / 24.75 16.81 / 24.31 / 19.87
FS-MPE 36.61 / 48.86 / 40.14 32.47 / 46.17 / 35.58
PA-CRF 54.43 / 52.82 / 53.61 54.29 / 41.66 / 47.14

RelATE 62.02 / 60.35 / 61.18 59.34 / 56.39 / 57.82

extract novel entities since the unified tagging schema model the
dependency between relation and entity. However, the best unified
model, PA-CRF, still cannot exceed RelATE, which demonstrates
the effectiveness of the relation-then-entity paradigm.

Table 1 reports the results of our model against other baseline
models on the FewRel test set. It can be seen that our method,
RelATE, significantly outperforms all competitive baseline models
and achieves the state-of-the-art in both two few-shot scenarios.

Comparisonwith Standard Supervisedmodel.Obviously, all
few-shot-based models exceed FT-BERT and CasRel in two settings,
which powerfully proves that the standard supervised paradigm is
incapable of solving FS-RTE.

Comparison with Entity-then-Relation models. Using con-
ventional entity extractor, the previous work MPE performs lower
than our RelATE with a significant gap (18.98% and 28.85% in two
settings respectively). Utilizing the support set to extract entities
in the few-shot manner, FS-MPE reaches higher performance com-
pared to MPE. But it still cannot catch up with our RelATE with
a huge gap (13.05% and 20.21% in two settings respectively). It in-
dicates that our proposed relation-then-entity paradigm is more
capable of solving FS-RTE than entity-then-relation paradigm.

Comparison with Unified models. Utilizing the few-shot se-
quence labeling methods to solve FS-RTE, all unified models outper-
form previous work, MPE, indicating that the few-shot sequence
labeling methods can extract novel entities since the unified tag-
ging schema model the dependency between relation and entity.
However, the best unified model, PA-CRF, still cannot exceed our
RelATE, which demonstrates that relation-then-entity paradigm
performs better than unified paradigm.

BottleneckAnalysis.To investigate the bottleneck of the entity-
then-relation and unified paradigm, we choose the paradigmatic
models (MPE, FS-MPE, PA-CRF including RelATE) and evaluate if
the spans of the head/tail entities are correct without considering
their relation. We conduct experiments on the FewRel test set and
report results in Table 2.

Firstly, for the entity-then-relation paradigm, we find that MPE
and FS-MPE suffer from the poor entity performance. Concretely,
MPE, based on standard supervised entity extractor, owns extremely
poor entity extraction performance (24.75% and 19.87%), which
powerfully proves that the standard entity extractor cannot extract
entities of novel relations due to the entity discrepancy problem.
FS-MPE, extracting entities in the few-shot way, has obvious im-
provements against MPE. It uses the support set to improve the
entity extraction performance to some extent but experiences ex-
tremely lower precision (36.61% and 32.47%) compared with its

recall. Without considering the relation semantics, many redun-
dant entity pairs with non-relation are extracted wrongly, hurting
its precision. Hence, its final performance is limited due to the
cascading errors. By contrast, the entity extraction performance
of RelATE has a absolute gap compared with MPE and FS-MPE,
validating that our relation-then-entity paradigm is free from the
entity discrepancy and redundant entity pair problem.

Secondly, as the best baseline model of the unified paradigm,
PA-CRF achieves higher entity extraction performance than entity-
then-relation models, but still cannot exceed our RelATE. Especially,
suffering the tag exploding problem, the performance gap between
PA-CRF and RelATE enlarges (from 7.57% in 5-way-5-shot to 10.68%
in 10-way-10-shot) when the number of relations (𝑁 -way) increases.
Theoretically, given 𝑁 relations, there exist total 𝑁 × 4 + 1 tags (𝑁
for relations, 4 for B/I tags of head/tail entity, 1 for O tag) for BIO
schema (e.g., 41 = 10 × 4 + 1 tags in the 10-way-10-shot setting).
Such a tag exploding issue makes PA-CRF struggle to distinguish
correct tags since existing few-shot methods experience perfor-
mance degradation with the number of tags increasing [1, 19]. By
contrast, thanks to the reasonable task decomposition, our RelATE
only has𝑁 +4+1 tags (𝑁 for relations, 4 for start/end tag of head/tail
entity, 1 for other tokens). In the 10-way-10-shot setting, it only has
15 = 10 + 4 + 1 tags, which is much less than the unified paradigm
(41 tags), alleviating the tag exploding problem.

Overall, we can draw the conclusion that (1) Entity-then-relation
paradigm struggles due to the entity discrepancy and redundant
entity pair problems. (2) Unified paradigm can alleviate these prob-
lems but performs poorly due to the tag exploding problem. (3)
Thanks to the reasonable task decomposition Relation-then-Entity,
our RelATE can avoid all problems above and achieve better per-
formance.

We further conduct ablation study and case study to validate the
strength of our proposed RelATE. Details are listed in Appendix D
and E.

5 CONCLUSION
We propose a novel task decomposition strategy, Relation-then-
Entity, for few-shot relational triple extraction and further instanti-
ate this strategy as a novel model RelATE. Different from previous
work, we first use an attentive relation detector to detect the relation
occurrence and then utilize the support set of detected relations to
extract corresponding head/tail entities. Therefore, our model can
overcome the entity discrepancy, redundant entity pair and tag ex-
ploding problem. We conduct extensive experiments on the FewRel
dataset, to validate the effectiveness of our proposed decomposi-
tion strategy. Experimental results show our model outperforms
state-of-the-art baselines over different scenarios.
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A DATASET STATISTICS

Training Set Dev Set Test Set

# Rel. 50 15 15
# Sent./Rel. 700 700 700
# Triple. 35000 10500 10500
# Tok./Sent. 25.02 24.65 25.04

Table 3: Statistics of FewRel Dataset.

Table 3 lists the statistics of FewRel dataset containing the num-
ber of relation type (#Rel.), the number of sentence per relation (#
Sent./Rel.), the number of relational triple (# Triple.) and the aver-
age number of token per sentence (# Tok./Sent.) for train/dev/test
set.

B IMPLEMENTATION DETAILS
B.1 Hyperparameter Settings
We employ the BERT-BASE-UNCASED [3] as the base encoder.
AdamW optimizer is used to train our model with the learning
rate of 1𝑒 − 5 for BERT encoder and 1𝑒 − 3 for other modules. We
also use the LinearScheduleWithWarmup with 100 steps to warm
up our model. The maximum sentence length is set as 128. Dropout
rate is set as 0.1. Gradient clip-norm is set as 10. The coefficient
weight of the relation-entity hint loss is set as 0.2. The filter size of
CNN is set as [3, 3] and the channel number is set as [8, 4]. All the
hyper-parameters are tuned on the validation set by grid search.
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B.2 Training Strategy
We follow the widely used few-shot training paradigm, Episodic
Training [21], to mimic N-way-K-shot scenario in the training phase.
In each epoch, we randomly sample N relation types from the
training set and each relation type randomly samples K instances
as the support set and other M instances as the query set. Our model
is trained with 50,000 epochs on the training set and evaluated with
3,000 epochs on the test set following the episodic paradigm.

B.3 Computation Architecture
We run all experiments using PyTorch 1.7.1 on the Nvidia Tesla
V100 GPU, Intel(R) Xeon(R) Silver 4110 CPU with 256GB memory
on Red Hat 4.8.3 OS.

C RELATEDWORK
Relational triple extraction aims to extract relational triples from
plain texts. Early works [11, 15] are heavily dependent on manual-
designed features. Recently, as neural networks show the effec-
tiveness of extracting features automatically, many neural-based
methods are proposed. These methods can be roughly divided into
three categories: (1) Table-filling methods [6, 8] build a table for
sentences and fill the table cells with entity or relation tags in a
specific order. (2) Tagging methods [22, 24, 26, 32] elaborate design
a tagging schema to construct connections between entities and
relations. (3) Seq2Seq methods [17, 28–30] try to generate the re-
lational triples in a sequence directly. However, all these methods
are data-hungry. They require a large amount of labeled data for
training while new emerged relations usually have a handful of
labeled data. In such a few-shot scenario, the performance of these
methods would drop dramatically.

Inspired by the development of Few-Shot Learning [2, 4, 16, 18–
21], Yu et al. [25] makes the first attempt to solve few-shot relational
triple extraction (FS-RTE). It follows the conventional entity-then-
relation paradigm [13, 27] and simply combines a standard super-
vised entity extractor with a prototype-based few-shot relation
classifier. Its standard supervised entity extractor fails to recognize
the head/tail entities of novel relations due to the entity discrepancy
problem. Replacing the supervised entity extractor with a few-shot
entity extractor will still suffer from the redundant entity pair with
no relation.

An alternative way is formalizing FS-RTE as a few-shot sequence
labeling task. Recently, many efforts have been devoted to solving
the few-shot sequence labeling task. Fritzler et al. [5] applied the
prototypical networks [19] with vanilla CRF to solve few-shot NER.
Hou et al. [10] proposed a collapsed dependency transfer mecha-
nism to learn label dependency of abstract labels. Yang and Katiyar
[23] reconstruct the existing NER datasets to adapt to the few-shot
NER task for better evaluation. Cong et al. [1] designs a prototyp-
ical amortized CRF to estimate the tag-specific transition scores
based on the associate label prototypes in the unified manner. All
these works can be used to solve FS-RTE but will introduce the tag
exploding problem, causing lower performance.

D ABLATION STUDY
Our model contains four main components: the relation-entity hint
loss (Hint), the dual-level attention (DualAtt), Matcher, and the span

Table 4: Ablation study: F1 scores (10−2) are reported on both
the dev set and the test set.

Model 5-Way-5-Shot 10-Way-10-Shot
Dev Test Dev Test

RelATE 48.15 42.32 47.46 40.93
- Hint 46.47 41.55 46.11 39.80
- DualAtt 44.70 40.82 45.44 37.91
- Matcher 35.91 36.31 33.30 33.38
- Span 36.75 37.97 34.56 33.72

(1) His greatest success was in the leading role in "Peter Grimes", an opera by 
Benjamin Britten.

MPE (Benjamin Britten, NULL, NULL)

RelATE (Benjamin Britten, composer, Peter Grimes)

(2) South Dakota governor, Dennis Daugaard urged residents in Dakota Dunes to 
evacuate.

FS-MPE (South Dakota, head of government, Dennis Daugaard)
(Dakota Dunes, head of government, Dennis Daugaard)

RelATE (South Dakota, head of government, Dennis Daugaard)

(3) The Ohio Connecting Railroad Bridge crosses the Ohio River at the island.

PA-CRF (Ohio Connecting Railroad, cross, Ohio River)

RelATE (Ohio Connecting Railroad Bridge, cross, Ohio River)

Figure 2: Cases from FewRel dataset. Orange and blue colors
marks the ground truth head entity and tail entity respec-
tively. (·, ·, ·) refers to the extracted triples and “NULL”means
no entity or relation is extracted.

tagging schema (Span). To study the contribution of each compo-
nent in our model, we run the ablation study on the dev set and the
test set of FewRel. From these ablations (see Table 4), we find that:
1) - Hint: To prove the contribution of the relation-entity hint loss,
we remove it and train RelATE only with negative log-likelihood
loss. Results show that without the relation-entity hint loss, the
performance drops slightly. It proves that the relation-entity hint
loss can model the dependency between relations and entities to
boost the performance. 2) - DualAtt: To study if the dual-level atten-
tion is helpful to improve the performance of the relation detection
subtask, we remove it and use the [CLS] embedding as the relation
representation (replacing ℎ̂𝑟𝑒𝑙 in Equation 5) directly. The perfor-
mance degradation shows that without dual-level attention, the
relation detector cannot aggregate the relation-specific information
to detect the relation correctly. 3) - Matcher: To verify that our
matcher contributes to capturing the similarity between prototypes
and queries, we remove it and use Euclidean distance [19] instead.
The performance decreases significantly, which indicates that the
neural-based matcher is good at measuring the similarity between
prototypes and queries. 4) - Span: To access the performance influ-
ence of span tagging schema, we replace it with the widely-used
BIO tagging schema and observed the performance drops.

E CASE STUDY
To demonstrate how our proposed decomposition strategy performs
better than others intuitively, we use three cases to compare the
predictions between our model against three strong baselines. From
Figure 2, we can observe that: (1) In Case 1, MPE fails to extract
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the tail entity Peter Grimes of relation composer. Because the tail
entity of the relation composer should be a Music but such an entity
constraint is unseen in the training set. The entity discrepancy
causes MPE to fail to extract it. By contrast, since RelATE utilizes
the support set of relation composer, it succeeds in recognizing
Peter Grimes. (2) In Case 2, FSMPE extracts a redundant entity
Dakota Dunes, resulting in an incorrect triple. This phenomenon
indicates that the redundant entity pairs will be extracted wrongly
without the guide of relation semantics. Since RelATE aggregates

the relation semantics to guide the entity extraction, this problem
can be avoided. (3) In Case 3, PA-CRF recognizes the boundary of
Ohio Connecting Railroad Bridgewrongly. That is because the
unified paradigmwill introduce too many tags, making it difficult to
learn the dependency of so many tags. Thus, the tag sequence could
be wrongly decoded. Thanks to the proper task decomposition,
RelATE does not introduce extra entity tags so it could extract the
head entity correctly.
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